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Abstract. We analysed an adaptive process of conditionally risk be-
haviour by using an agent-based simulation. We observed that relative
high-risk behaviours easily survive in a tournament game. Further, the
more high-risk behaviours, but not the highest ones, are most adaptive
in a society in which mutants always can invade. These insights not
only correspond to human behaviour described by the prospect theory,
but also make it possible to explain a rational mechanism which cannot
be explained by this theory. While this paper may not be representa-
tional, it can provides significant insights beyond behavioural economics
to areas as diverse as evolution theory, social psychology, and consumer
behavioural theory. Moreover, we propose some ideas that can be used
to extend the model to analyse it circumstantially.

1 Introduction

Studies on risk behaviour are one of the most significant topics today. People
always face many opportunities to take risks. The financial theory mentions that
you must take high risk if you would want to gain a high return. A good exam-
ple is how people choose between an adjustable rate or not for their mortgage
repayments.

Result brings competition in many cases. The winner-takes-all phenomenon
in business has increased as a result of the increased competition brought by
the Internet [8]. If a strategy of the type of education someone chooses for their
children is regarded as a kind of risk, schools or firms they enter or work are
the results of competition. School entrance examinations and job taking can be
regarded as a ’winner takes all’ game. In such a competition, the decision on
who wins depends on just that whether a player’s payoff is larger or smaller
than that of their opponent. Here, we discuss a radical type of competition such
as a situation where the player’s risk behaviour divides the winners from the
losers.

We will provide a framework that consists of an evolutionary adaptive process
of risk behaviour on the basis of the competitive aspect of the results of games.
Our study may be highly nonrepresentational. However, discussions about spe-
cial traits of how humans manage risk behaviours from the viewpoint of evolution
provides an effective theoretical insights with which researchers can rationally
describe risk behaviour.

Studies on risk behaviour are often empirical. [9] empirically tested the exis-
tence of risk behaviour. Many types of risk studies treat humans’ psychological



traits by using experimental or questionnaire approaches. This is because the
risk behaviour often seems irrational. As well known, the humans often behave
irrationally. The prospect theory mentioned how people make decisions among
alternatives that involve taking risks such as decision-making in finance [5]. How-
ever, the theory has limited explanatory power because it does not explain why
the facts emerge. [12] discovered that the free products (price zero products)
have a special effect. However, they cannot explain the mechanism of why the
free products are special.

Are there any studies in which the reasons for risk behaviour are discussed?
Some economic research addresses this question: [10] uses mathematical analysis
to explain that people’s traits of small risk-averse attitude are a sufficient condi-
tion for those of large risk-averse attitude if their utility functions are convex and
increasing. [2] extended the expected utility theory in economics. They analyzed
how having one’s aspirations satisfied affects how consumers perform. These pre-
vious works described the empirical facts but did not explain the mechanisms.
That is to say, why do these facts emerge? We analysed the risk behaviour on
the basis of the adaptive process. What type of risk behaviour brings victory? If
this behaviour would be hard for people to calculate rationally, it is important
to behave adaptively. Therefore, we will understand that the irrational actions
the people do are, in fact, rational in the long term [3] if we analyse the adaptive
risk behaviour.

Our work is strongly inspired by [11]. They indicate the advantage of using
specific strategies in a tournament game. However, this insight is too restricted to
be applicable to more general risk behaviour. To address the goal of evolutionally
analysis of the risk behaviour, their work needs to be extended in several ways.

2 Basic Model

Our work deals with evolutionary adaptive process of conditionally risk be-
haviour as an example of risk behaviour. By extending our idea, our model
can be applied to various types of risk behaviours. First, we defined a risk game
and a sequential risk game, and constructed a basic model. The adaptive pro-
cess of the game is then described, and finally our basic model is analyzed and
interpreted.

2.1 Definition

First, we define an a-game to develop our model. An a-game is defined as a
lottery (gamble or prospect) which either gains or loses a dollar(s) with equally
probability, .5. Thus, the a-game is a game the expectation of which is 0 dollars,
and the degree of @ means that of risk.(« must be a non-negative.) However, we
treat only O-game and 1-game here for simplicity. Second, we use an expectation
vector of a lottery as the form v = (x1,p1; - ;Tn,pn), denoting an option that
gains income z; with probability p;. Moreover, the incomes are ranked from least



to best in terms of preference order, z; < z2 < --- < x,,. For example, the form
of the a-game is v = (—a, .5; @, .5).

Next, we define n-sequential game to contextualize this game to conditionally
risk behaviour. The term ”sequential” means that a player can choose the next
action after knowing the result of the previous game(s). This idea is used to
model conditionally risk behaviour.

As shown in Table 1, when n = 2, there are six kinds of game. All the players
can choose any game they like. Their selection is called a strategy.

Table 1: All strategies and their expectation vectors in n = 2

No.|a of first game|a of sequential game Expectation vector
I 0 0 (0,1)

il 0 1 (—1, 51, 5)

T 1 0 (—1, 51, 5)

v 1 1 (—2,.25;0, 5,2, .25)
A% 1 0 if win in first game, 1 otherwise|(—2,.25;0,.25;1,.5)
VI 1 1 if win in first game, 0 otherwise|(—1, .5;0, .25; 2, .25)

2.2 Adaptive process

There are many models of the learning process in evolution theory. Here, we use
a genetic algorithm (GA) for the learning process. This is because our objective,
finding the best conditionally risk behaviour is difficult to discuss calculatively
because of the limits to human rationality. To do this, we need a discussion on
the evolutional perspective. Therefore, GA as an evolutionary metaphor [4] is
appropriate for such an ecological perspective. Further, GA has a lot of variations
and we can use it to interpret many situations [6].

Deciding on the selection pressure is very important for adopting GA. Ac-
cording to [6], the models used to decide it are a roulette selection, an expectation
selection, a rank selection, an elite keeping selection [1], and a tournament se-
lection. The roulette selection, which is a basic model of decision of selection
pressure, is a selection rule, which is used to calculate the survival probability of
an individual in next generation in proportion as its fitness value. The expecta-
tion selection is usually used when the number of individuals is relatively low, so
it is not appropriate for our purpose. This is because the expected value of any
alpha-game is equally zero. The rank selection is an essentially similar rule to
the roulette selection and the elite keeping selection is one of the extensions of
the roulette selection. The tournament selection is a rule that allows the survival
only the best individual of groups and be copied from the best into the others.

Finally, we have to discuss mutation in GA. It is natural to think that the
object in this paper is in an environment marked by natural selection, that is,
we must develop our model in which invasion by the new strategists potentially
happens. Thus, the mutation process in GA is used here.



2.3 Analysis and Implementation

Before using the evolutional process, we analyzed six strategies defined in Section
2.1 in the tournament game. First, we define the notation > and =. Let strategy
x and y be ones of the above six strategies. Let > y hold if and only if the
probability z triumphs over y in a 2-players tournament game exceeds .5. Note
that > does not satisfy transitivity. Also, z = y if and only if it is just .5. The
following relational expressions are then formed between the above six strategies;

V> (I,VI)>VI and =z =y in all the other combinations (z,y). (1)

Thus, in the tournament game of conditionally risk behaviour, a specific
strategy is advantageous to the other strategies while all the strategies are in-
difference in the roulette game. This result predicates that there are strategies
that have higher probability to win the others in a tournament game among the
strategies that can set the degree of risk sequentially in spite of having the same
expected value. It is very important to discuss this idea to extend the analysis
evolutionally.

Are there such rules in our society? A soccer game divides teams into a
winner and a loser regardless of hairbreadth margin or double score. A ranking
system is used to line up people and even items ranging from cars to corn. An
admission exam discriminates successful applicants from rejected ones. Produc-
tion goods are either bought or put away to the stock. We can call this scenario
a tournament game, and strategies in the conditionally risk behaviour differ in
terms of the outcome they confer on the players. More noteworthy is the point
that the human’s simple rationality cannot calculate which strategy is advanta-
geous. However, the tournament games remain ingrained in our society over the
course of recorded human history because humans have been participating in
the tournament games to get a partner. Therefore, we expect that the humans
may prefer advantageous strategies adaptively when they play the tournament
games.

3 Simulation of Many-sequential Model

To discover the more detailed advantageously of an adaptive strategy in a con-
ditionally risk behaviour game, we extended the basic model from a 2-sequential
game to an m-sequential one. First, we formulate our idea to GA. A player’s
strategy is defined as a gene of an individual. Theoretically, gene length is 2™ —1
and the meaning of every gene is as follows:

Gene = ( 1, 2(w), 2(1), 3(ww), 3(wl), 3(Iw), 3(1), ....) .

For example, notation [3(wl)] means the [third] selection if the player won
[w] the first game and lost [l] the second game. As mentioned in Section 2,
alternatives the players can choose are only two types: 0O-game or 1-game. The
number of all the strategies, i.e., all the phenotypes, is 22" ~'. Thus, when n = 2
(2-sequential model), (#G,#T) = (3,8), and when n = 3, (#G, #T) = (7,128),
and when n = 4, (#G,#7T) = (15,32768). Strictly, 0-game has no victory or



defeat and, therefore we define that a player always wins when they play a 0-
game. This is why a gene (000) and (001) denote the same strategies (correctly,
(001) is meaningless).

3.1 Observation

We simulate our extended model. All the simulations run 10,000 times with
different random seeds and the observation data are their averages. First, we set
the parameters as follows: Population is 2000, No. of Generation is 1000, and
Mutation rate (which is only used in Section 3.2) is 0.01.

We observed the population ratio of the strategies with a time series. First,
some basic strategies were observed in a 2-sequential game. The performances
of six strategies in Section 2.1 are shown in Figure 1. As in Eq. 1, Strategy V is
the most advantageous and VI is the least, and II and III remain because these
are indifferent to all the others. Second, we compared the performances in n = 2
(2-sequential game) with those in n = 3. Those of the same six strategies in
Section 2.1 are shown in Figure 2, I (Always-safe, (0000000)), IV (Always-risky,
(1111111)), IT (0001000), IIT (0100000), V (0100100), and VI (0101000). In a
3-sequential game, there were 128 types of strategies; therefore, even Strategy V
was not the best and it disappears in due course.

Who won? We observed some notable strategies as shown in Table 2.

Table 2: Strategy name in n = 3
Name |Gene type|Expectation vector
Strategy A1|(1010001)|(-3,.125; —1,.125;0,.25;1,.5)
Strategy B1|(1010011)|(-3,.125; —1,.25;1,.625)
Strategy C1|(1011001)|(-3,.125; —1,.125;0,.5;2,.25)
Strategy D1[(1011011)|(-3,.125; —1,.25;0,.25; 1,.125; 2, .25)
Strategy C2|(1110001)|(-3,.125; —1,.125;0,.5;2,.25)
Strategy D2[(1110011)|(-3,.125; —1,.25;0,.25; 1,.125; 2, .25)
( )|(=3
( |2
( )|(=3

Strategy D3| (1110101 ,.125;—1,.25;0, .25; 1, .125; 2, .25)
,.25;—1,.25;1,.25; 2, .25)
,.125; 1, .375;1, .25; 2, .25)

Strategy E1
Strategy B2

1110110
1110111

As shown in Figure 3, two strategies (B2 and B1l) maintain an advantage
during relative early periods (100 < ¢ < 200); in particular, Strategy B2 grows
and accounts for half of all the populations. However, these Strategy B1 and B2
lost their power and finally arrived at the second best position. In the last period
of the simulation, Strategies D1, D2, and D3 have the top share.

3.2 Mutation

As mentioned in Section 2.2, we need to test an environment with a mutation.
Here for simplicity, mutation emerges in a level of an individual, not a level of a
gene. Performances of the installed mutation (Figure 3) are shown in Figure 4.
Compared with performances without mutation (Figure 3), the strategies which



were advantageous in the initial stages maintained their advantage until the end
of the simulation. However, the strategies that were of advantage at the end of
the simulation could not rise to the top of the share.
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Figure 1: Population ratio in every
strategy in 2-sequential game
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Figure 2: Population ratio in
3-sequential game (1)
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Figure 3: Population ratio in 3-sequential game (2)
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Figure 4: Population ratio in 3-sequential game with mutation

3.3 Discussion
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We now discuss the simulation results of our extended model. First, we clarified
that relative high-risk strategies are the most suitable in the tournament game.
However, the highest risk strategy (1111111) disappeared during the early pe-
riods, so the best degree of risk is in intermediary position. Moreover, under
the circumstance with mutation, the best strategies became more risky. These
are very interesting and significant insights, we need to analyse them in more

detailed.



Second, we consider why the mechanism emerges. In the society without
mutation, Strategy B1 extends its influence rapidly in the early periods. This is
because the probability of that the expected value exceeding zero is .625, and
then it triumphs over the other strategies accounting for over half of all. As a
result, Strategy B1 has a 20 % share of the pie at ¢ = 100. After ¢ = 100, a lot
of strategies are dumped into the dustbin. What comes next? According to the
notation in Section 2.3, the following relational expressions are formed:

Dx>B2>Bl and Bl=Dz (z=1,2,3). (2)

Strategy B2 has a unique and peculiar trait, which is indifferent or dominant to
almost all the other strategies and triumphs over B1, that is, it has a property
similar to the Evolutionally Stable Strategy [7]. Therefore, B2 has a 47 % share
of the pie at t = 200.

After Strategy B2 came to the top, the model was the most interesting. As
shown Eq. 2, Strategy Dx can kill B2 in the society without mutation. This re-
sembles the way that mammals triumphed over dinosaurs in evolutionary history
even though they were not the most powerful phylon. This phenomenon cannot
be seen in the society with mutation. This is because in our society, a certain
number of mutants is always invading, and so using Dx cannot lead to a victory
over them.

We will now discuss why a strategy to act conservatively after taking a risk
and wining the first stages, did not result in some benefit. Studying the perfor-
mance of Strategy A1, a representative example of this strategy, provides us with
a hint. As is clear from Figure 3, the share is expanded in the early simulation
periods temporally, and is kept, albeit only slightly, in the final period. However,
according to Eq. 3, Al cannot triumph over B1 and B2, which are dominant in
the early periods. It does not become extinct because it triumphs over Dx.

(B1,B2) > A1 > Dz (z=1,2,3) (3)

Such a sensitive insight into risk behaviour provides an effective discussion
about not only behavioural economics but also evolution theory, social psy-
chology, and consumer behavioural theory. The prospect theory mentioned that
people tend to act safe when they gain high payoffs and vice versa. Our study
clarified its mechanism that cannot be discussed in the context of the prospect
theory.

4 Ideas for Extensions

We need the more extended model, and now present some ideas for extensions.
First, a model can be used to treat many types of a-game will be considered.
For example, a four-type model (o = 0,1/3,2/3,1), a gene of player’s strategy
is formulated as

Gene = (1(2bits),2(w)(2bits),2(1)(2bits), ... ).

The gene length is then six bits and the number of its phenotype is 64. Ac-
cording to our preparatory experiment, Strategy (1,1/3,1), (1,0,1), and (2/3,2/3,1)



finally won in the four-type model. Moreover, Strategy (1,3/7, 1) remains in com-
petition in the eight-type model. Another extensionis continualising the degree
of the risk. As you might be aware, the expectation vectors of Strategy Dx (D1,
D2, and D3) are all the same. Therefore, we have received approval to investi-
gate which vector is the most suitable expectation vector. The work described in
this paper will be extended by searching for an evolutionally stable strategy. We
will analyse a one-shot risk game, which follows a probability density function
that has a payoff with an expected value of zero. Whether a conditionally risk
behaviour which fulfils the expectation vector exists or not is considered to be
a separate issue. We need to decode the inverse problem. By analysing such ex-
tensions carefully, we can contribute to a significant discussions about the most
suitable conditionally risk behaviour.
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